Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 751
Filtrar
1.
J Am Chem Soc ; 146(15): 10293-10298, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569597

RESUMO

Fractionating and characterizing target samples are fundamental to the analysis of biomolecules. Extracellular vesicles (EVs), containing information regarding the cellular birthplace, are promising targets for biology and medicine. However, the requirement for multiple-step purification in conventional methods hinders analysis of small samples. Here, we apply a DNA origami tripod with a defined aperture of binders (e.g., antibodies against EV biomarkers), which allows us to capture the target molecule. Using exosomes as a model, we show that our tripod nanodevice can capture a specific size range of EVs with cognate biomarkers from a broad distribution of crude EV mixtures. We further demonstrate that the size of captured EVs can be controlled by changing the aperture of the tripods. This simultaneous selection with the size and biomarker approach should simplify the EV purification process and contribute to the precise analysis of target biomolecules from small samples.


Assuntos
Biotecnologia , Fracionamento Celular , DNA , Exossomos , Nanotecnologia , DNA/química , Exossomos/química , Exossomos/imunologia , Nanotecnologia/métodos , Fracionamento Celular/métodos , Anticorpos/imunologia , Biomarcadores/análise , Biotecnologia/métodos , Microscopia de Fluorescência , Imagem Individual de Molécula
2.
Int J Nanomedicine ; 18: 3643-3662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427367

RESUMO

Pathological scars are the result of over-repair and excessive tissue proliferation of the skin injury. It may cause serious dysfunction, resulting in psychological and physiological burdens on the patients. Currently, mesenchymal stem cells-derived exosomes (MSC-Exo) displayed a promising therapeutic effect on wound repair and scar attenuation. But the regulatory mechanisms are opinions vary. In view of inflammation has long been proven as the initial factor of wound healing and scarring, and the unique immunomodulation mechanism of MSC-Exo, the utilization of MSC-Exo may be promising therapeutic for pathological scars. However, different immune cells function differently during wound repair and scar formation. The immunoregulatory mechanism of MSC-Exo would differ among different immune cells and molecules. Herein, this review gave a comprehensive summary of MSC-Exo immunomodulating different immune cells in wound healing and scar formation to provide basic theoretical references and therapeutic exploration of inflammatory wound healing and pathological scars.


Assuntos
Cicatriz , Exossomos , Sistema Imunitário , Imunomodulação , Células-Tronco Mesenquimais , Humanos , Cicatriz/imunologia , Cicatriz/patologia , Cicatriz/terapia , Exossomos/imunologia , Exossomos/patologia , Sistema Imunitário/imunologia , Sistema Imunitário/patologia , Imunomodulação/imunologia , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/patologia , Cicatrização/imunologia
3.
Cells ; 12(8)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37190011

RESUMO

Leishmaniasis is a parasitic disease caused by different species of Leishmania and transmitted through the bite of sand flies vector. Macrophages (MΦ), the target cells of Leishmania parasites, are phagocytes that play a crucial role in the innate immune microbial defense and are antigen-presenting cells driving the activation of the acquired immune response. Exploring parasite-host communication may be key in restraining parasite dissemination in the host. Extracellular vesicles (EVs) constitute a group of heterogenous cell-derived membranous structures, naturally produced by all cells and with immunomodulatory potential over target cells. This study examined the immunogenic potential of EVs shed by L. shawi and L. guyanensis in MΦ activation by analyzing the dynamics of major histocompatibility complex (MHC), innate immune receptors, and cytokine generation. L. shawi and L. guyanensis EVs were incorporated by MΦ and modulated innate immune receptors, indicating that EVs cargo can be recognized by MΦ sensors. Moreover, EVs induced MΦ to generate a mix of pro- and anti-inflammatory cytokines and favored the expression of MHCI molecules, suggesting that EVs antigens can be present to T cells, activating the acquired immune response of the host. Since nano-sized vesicles can be used as vehicles of immune mediators or immunomodulatory drugs, parasitic EVs can be exploited by bioengineering approaches for the development of efficient prophylactic or therapeutic tools for leishmaniasis.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Interações Hospedeiro-Patógeno , Imunomodulação , Leishmania guyanensis , Leishmania , Ativação de Macrófagos , Macrófagos , Leishmania guyanensis/imunologia , Interações Hospedeiro-Patógeno/imunologia , Leishmania/imunologia , Animais , Camundongos , Linhagem Celular , Macrófagos/imunologia , Macrófagos/parasitologia , Micropartículas Derivadas de Células/imunologia , Micropartículas Derivadas de Células/parasitologia , Exossomos/imunologia , Exossomos/parasitologia , Peptídeo Hidrolases/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Citocinas/metabolismo , Imunidade Inata
4.
Microb Biotechnol ; 16(7): 1524-1535, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212362

RESUMO

Exosomes, membrane vesicles released extracellularly from cells, contain nucleic acids, proteins, lipids and other components, allowing the transfer of material information between cells. Recent studies reported the role of exosomes in pathogenic microbial infection and host immune mechanisms. Brucella-invasive bodies can survive in host cells for a long time and cause chronic infection, which causes tissue damage. Whether exosomes are involved in host anti-Brucella congenital immune responses has not been reported. Here, we extracted and identified exosomes secreted by Brucella melitensis M5 (Exo-M5)-infected macrophages, and performed in vivo and in vitro studies to examine the effects of exosomes carrying antigen on the polarization of macrophages and immune activation. Exo-M5 promoted the polarization of M1 macrophages, which induced the significant secretion of M1 cytokines (tumour necrosis factor-α and interferon-γ) through NF-κB signalling pathways and inhibited the secretion of M2 cytokines (IL-10), thereby inhibiting the intracellular survival of Brucella. Exo-M5 activated innate immunity and promoted the release of IgG2a antibodies that protected mice from Brucella infection and reduced the parasitaemia of Brucella in the spleen. Furthermore, Exo-M5 contained Brucella antigen components, including Omp31 and OmpA. These results demonstrated that exosomes have an important role in immune responses against Brucella, which might help elucidate the mechanisms of host immunity against Brucella infection and aid the search for Brucella biomarkers and the development of new vaccine candidates.


Assuntos
Brucelose , Exossomos , Macrófagos , Brucella melitensis , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/microbiologia , Exossomos/imunologia , Exossomos/microbiologia , Animais , Camundongos , Polaridade Celular , Antígenos de Bactérias/imunologia , Brucelose/imunologia , Brucelose/metabolismo , Transdução de Sinais , Espaço Intracelular/microbiologia , Viabilidade Microbiana
5.
Cell Transplant ; 32: 9636897221148775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36661068

RESUMO

Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease associated with impaired organ functions that can seriously affect the daily life of patients. Recent SLE therapies frequently elicit adverse reactions and side effects in patients, and clinical heterogeneity is considerable. Mesenchymal stromal cells (MSCs) have anti-inflammatory, tissue repair, and immunomodulatory properties. Their ability to treat autoimmune diseases largely depends on secreted extracellular vesicles, especially exosomes. The effects of exosomes and microRNAs (miRNAs) on SLE have recently attracted interest. This review summarizes the applications of MSCs derived from bone marrow, adipocyte tissue, umbilical cord, synovial membrane, and gingival tissue, as well as exosomes to treating SLE and the key roles of miRNAs. The efficacy of MSCs infusion in SLE patients with impaired autologous MSCs are reviewed, and the potential of exosomes and their contents as drug delivery vectors for treating SLE and other autoimmune diseases in the future are briefly described.


Assuntos
Exossomos , Lúpus Eritematoso Sistêmico , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Exossomos/genética , Exossomos/imunologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/terapia , MicroRNAs/genética , MicroRNAs/imunologia , Células-Tronco Mesenquimais/imunologia
6.
JCI Insight ; 7(19)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214220

RESUMO

Intercellular communication is critical for homeostasis in mammalian systems, including the gastrointestinal (GI) tract. Exosomes are nanoscale lipid extracellular vesicles that mediate communication between many cell types. Notably, the roles of immune cell exosomes in regulating GI homeostasis and inflammation are largely uncharacterized. By generating mouse strains deficient in cell-specific exosome production, we demonstrate deletion of the small GTPase Rab27A in CD11c+ cells exacerbated murine colitis, which was reversible through administration of DC-derived exosomes. Profiling RNAs within colon exosomes revealed a distinct subset of miRNAs carried by colon- and DC-derived exosomes. Among antiinflammatory exosomal miRNAs, miR-146a was transferred from gut immune cells to myeloid and T cells through a Rab27-dependent mechanism, targeting Traf6, IRAK-1, and NLRP3 in macrophages. Further, we have identified a potentially novel mode of exosome-mediated DC and macrophage crosstalk that is capable of skewing gut macrophages toward an antiinflammatory phenotype. Assessing clinical samples, RAB27A, select miRNAs, and RNA-binding proteins that load exosomal miRNAs were dysregulated in ulcerative colitis patient samples, consistent with our preclinical mouse model findings. Together, our work reveals an exosome-mediated regulatory mechanism underlying gut inflammation and paves the way for potential use of miRNA-containing exosomes as a novel therapeutic for inflammatory bowel disease.


Assuntos
Antígenos CD11 , Colite , Exossomos , Inflamação , Células Mieloides , Animais , Antígenos CD11/genética , Antígenos CD11/imunologia , Colite/genética , Colite/imunologia , Exossomos/genética , Exossomos/imunologia , Inflamação/genética , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Intestinos/imunologia , Lipídeos , Mamíferos/genética , Mamíferos/imunologia , Camundongos , MicroRNAs/imunologia , Proteínas Monoméricas de Ligação ao GTP/imunologia , Células Mieloides/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fator 6 Associado a Receptor de TNF/imunologia
7.
Int J Med Sci ; 19(8): 1265-1274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928722

RESUMO

Objective: To investigate the efficiency and potential mechanisms of exosomes from dendritic cells (DCs) transfected with Forkhead box protein P3 (FOXP3) in the development of experimental autoimmune encephalomyelitis (EAE). Method: Mouse bone marrow-derived immature DCs were loaded with adenovirus carrying FOXP3 gene, and exosomes were generated. Then the exosomes with FOXP3 (FOXP3-EXOs) were co-cultured with CD4+T cell in vitro to evaluate their potential on CD4+T cell proliferation and differentiation, and injected into EAE mice to assess their effects on the development of EAE. Result: FOXP3-EXOs were effective to inhibit the CD4+T cell proliferation and the production of Interferon gamma (IFN-γ), interleukin (IL)-6, and IL-17, while they promoted the production of IL-10 in vitro. Moreover, FOXP3-EXOs treatment significantly decreased the neurological scores, reduced the infiltration of inflammatory cells into the spinal cord, and decreased demyelination in comparison to saline and Con-EXOs treated EAE mice. Moreover, the FOXP3-EXOs treatment resulted in obvious increases in the levels of regulatory T (Treg) cells and IL-10, whereas levels of T helper 1 (Th1) cells, Th17 cells, IFN-γ, IL-6, and IL-17 decreased significantly in the splenocyte culture of EAE mice. Conclusion: The present study preliminarily investigated the effects and potential mechanisms of FOXP3-EXOs in EAE and revealed that the FOXP3-EXOs could inhibit the production of Th1 and Th17 cells and promote the production of Treg cells as well as ameliorate the development of EAE. The neuroprotective effects of FOXP3-EXOs on EAE are likely due to the regulation of Th/Treg balance.


Assuntos
Células Dendríticas , Encefalomielite Autoimune Experimental , Exossomos , Fatores de Transcrição Forkhead , Animais , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/terapia , Exossomos/genética , Exossomos/imunologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-17/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores , Células Th17
8.
Front Immunol ; 13: 817942, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154134

RESUMO

Tumor immunity is involved in malignant tumor progression. Myeloid-derived suppressor cells (MDSCs) play an irreplaceable role in tumor immunity. MDSCs are composed of immature myeloid cells and exhibit obvious immunomodulatory functions. Exosomes released by MDSCs (MDSCs-Exos) have similar effects to parental MDSCs in regulating tumor immunity. In this review, we provided a comprehensive description of the characteristics, functions and mechanisms of exosomes. We analyzed the immunosuppressive, angiogenesis and metastatic effects of MDSCs-Exos in different tumors through multiple perspectives. Immunotherapy targeting MDSCs-Exos has demonstrated great potential in cancers and non-cancerous diseases.


Assuntos
Células Supressoras Mieloides/imunologia , Neoplasias/imunologia , Exossomos/imunologia , Humanos , Imunoterapia , Células Supressoras Mieloides/patologia , Neoplasias/patologia , Neoplasias/terapia , Microambiente Tumoral/imunologia
9.
J Exp Clin Cancer Res ; 41(1): 41, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35086548

RESUMO

BACKGROUND: Cancer cells have an imbalance in oxidation-reduction (redox) homeostasis. Understanding the precise mechanisms and the impact of the altered redox microenvironment on the immunologic reaction to tumors is limited. METHODS: We isolated exosomes from ovarian cancer cells through ultracentrifuge and characterized by Western-blots and Nanoparticle Tracking Analysis. 2D, 3D-coculture tumor model, and 3D live cell imaging were used to study the interactions between tumor cells, macrophages and CD3 T cells in vitro. The role of exosomal miR-155-5p in tumor growth was evaluated in xenograft nude mice models and immune-competent mice models. Flow cytometry and flow sorting were used to determine the expression levels of miR-155-5p and PD-L1 in ascites and splenic macrophages, and the percentages of CD3 T cells subpopulations. RESULTS: The elevation of reactive oxygen species (ROS) greatly downregulated exosomal miR-155-5p expression in tumor cells. Neutralization of ROS with N-acetyl-L-cysteine (NAC) increased the levels of miR-155-5p in tumor exosomes that were taken up by macrophages, leading to reduction of macrophage migration and tumor spheroid infiltration. We further found that programmed death ligand 1 (PD-L1) is a functional target of miR-155-5p. Co-culture of macrophages pre-treated with NAC-derived tumor exosomes or exosomal miR-155-5p with T-lymphocytes leading to an increased percentage of CD8+ T-lymphocyte and a decreased CD3+ T cell apoptosis through PD-L1 downregulation. Tumor growth in nude mice was delayed by treatment with NAC-derived tumor exosomes. Delivery of tumor exo-miR-155-5p in immune-intact mice suppressed ovarian cancer progression and macrophage infiltration, and activated CD8+ T cell function. It is of note that exo-miR-155-5p inhibited tumor growth more potently than the PD-L1 antibody, suggesting that in addition to PD-L1, other pathways may also be targeted by this approach. CONCLUSIONS: Our findings demonstrate a novel mechanism, ROS-induced down-regulation of miR-155-5p, by which tumors modulate the microenvironment that favors tumor growth. Understanding of the negative impact of ROS on the tumor immune response will improve current therapeutic strategies. Targeting miR-155-5p can be an alternative approach to prevent formation of an immunosuppressive TME through downregulation of PD-L1 and other immunosuppressive factors.


Assuntos
Antígeno B7-H1/metabolismo , Exossomos/imunologia , Imunidade/imunologia , Macrófagos/metabolismo , MicroRNAs/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Espécies Reativas de Oxigênio
10.
Nutrients ; 14(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35057528

RESUMO

Gut bacteria release extracellular vesicles (BEVs) as an intercellular communication mechanism that primes the host innate immune system. BEVs from E. coli activate dendritic cells (DCs) and subsequent T-cell responses in a strain-specific manner. The specific immunomodulatory effects were, in part, mediated by differential regulation of miRNAs. This study aimed to deepen understanding of the mechanisms of BEVs to drive specific immune responses by analyzing their impact on DC-secreted cytokines and exosomes. DCs were challenged with BEVs from probiotic and commensal E. coli strains. The ability of DC-secreted factors to activate T-cell responses was assessed by cytokine quantification in indirect DCs/naïve CD4+ T-cells co-cultures on Transwell supports. DC-exosomes were characterized in terms of costimulatory molecules and miRNAs cargo. In the absence of direct cellular contacts, DC-secreted factors triggered secretion of effector cytokines by T-cells with the same trend as direct DC/T-cell co-cultures. The main differences between the strains influenced the production of Th1- and Treg-specific cytokines. Exosomes released by BEV-activated DCs were enriched in surface proteins involved in antigen presentation and T-cell activation, but differed in the content of immune-related miRNA, depending on the origin of the BEVs. These differences were consistent with the derived immune responses.


Assuntos
Citocinas/metabolismo , Células Dendríticas/microbiologia , Exossomos/microbiologia , Vesículas Extracelulares/imunologia , Microbioma Gastrointestinal/imunologia , Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Comunicação Celular/imunologia , Técnicas de Cocultura , Escherichia coli/imunologia , Exossomos/imunologia , Humanos , Ativação Linfocitária/imunologia , MicroRNAs/metabolismo , Probióticos/administração & dosagem , Linfócitos T/imunologia , Linfócitos T/microbiologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/microbiologia
11.
Adv Sci (Weinh) ; 9(5): e2103245, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34927389

RESUMO

Despite their potent antitumor activity, clinical application of immune checkpoint inhibitors has been significantly limited by their poor response rates (<30%) in cancer patients, primarily due to immunosuppressive tumor microenvironments. As a representative immune escape mechanism, cancer-derived exosomes have recently been demonstrated to exhaust CD8+ cytotoxic T cells. Here, it is reported that sulfisoxazole, a sulfonamide antibacterial, significantly decreases the exosomal PD-L1 level in blood when orally administered to the tumor-bearing mice. Consequently, sulfisoxazole effectively reinvigorates exhausted T cells, thereby eliciting robust antitumor effects in combination with anti-PD-1 antibody. Overall, sulfisoxazole regulates immunosuppression through the inhibition of exosomal PD-L1, implying its potential to improve the response rate of anti-PD-1 antibodies.


Assuntos
Antígeno B7-H1 , Exossomos , Inibidores de Checkpoint Imunológico , Neoplasias , Sulfisoxazol , Animais , Antígeno B7-H1/antagonistas & inibidores , Exossomos/efeitos dos fármacos , Exossomos/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade , Camundongos , Neoplasias/tratamento farmacológico , Sulfisoxazol/farmacologia , Sulfisoxazol/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos
12.
Chem Biol Interact ; 352: 109779, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34922904

RESUMO

Growing evidence shows that cancer progression links with both heterogeneity of the tumor microenvironment and dysregulated activity of immune cells. Cancer-secreted exosomes are being recognized as indispensable mediators of the exchange cargo between cancer and immune cells. The M2-phenotype tumor-associated macrophages have the function of promoting tumor progression and drug resistance. Diffuse large B-cell lymphoma(DLBCL) is a highly heterogeneous and very common malignant non-Hodgkin's lymphoma. Here, we demonstrate that different subtype DLBCL cell-derived exosomes are internalized by macrophages, which can affect macrophages polarization. The mechanism of DLBCL-derived exosomes on macrophage polarization remains unclear currently. This study showed that DLBCL-secreted exosomes could induce the transformation of macrophages to a protumor M2-like phenotype, and block the drug-induced apoptosis of DLBCL cells in an indirect co-culture system. Different DLBCL-derived exosomes could change the phenotype of macrophages through the STAT3 signaling, which upregulated the expression of oncogenic genes and classical markers of M2-like phenotype macrophages, such as IL-10, CD206, and CD163. The addition of DLBCL-derived exosomes resulted in the activation of the STAT3 signaling pathway of M0/M2 macrophages in an indirect co-culture system. GP130 was highly enriched in DLBCL-derived exosomes, which triggered the activation of STAT3 of macrophages and subsequently induced the downstream targets such as BCL2, SURVIVIN, and BAX. The parallel changes of STAT3 and GP130 in macrophages confirmed that GP130 of DLBCL-derived exosomes promoted macrophage polarization by activating STAT3 signaling. Furthermore, all of these effects could be reversed by the GP130 inhibitor SC144. The data indicated that DLBCL-derived exosomes could trigger macrophages polarization into a pro-survival M2-like phenotype, which was at least partially through the GP130/STAT3 signaling pathway. Collectively, this study showed that DLBCL-derived exosomes could promote macrophages transformation to protumor M2-like phenotype in the tumor microenvironment.


Assuntos
Receptor gp130 de Citocina/imunologia , Exossomos/imunologia , Exossomos/metabolismo , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/metabolismo , Fator de Transcrição STAT3/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Linhagem Celular Tumoral , Receptor gp130 de Citocina/antagonistas & inibidores , Humanos , Hidrazinas/farmacologia , Imunofenotipagem , Modelos Biológicos , Fenótipo , Quinoxalinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/classificação
13.
Mol Med Rep ; 25(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821373

RESUMO

Coronavirus disease 2019 (COVID­19) is a global pandemic that can have a long­lasting impact on public health if not properly managed. Ongoing vaccine development trials involve classical molecular strategies based on inactivated or attenuated viruses, single peptides or viral vectors. However, there are multiple issues, such as the risk of reversion to virulence, inability to provide long­lasting protection and limited protective immunity. To overcome the aforementioned drawbacks of currently available COVID­19 vaccines, an alternative strategy is required to produce safe and efficacious vaccines that impart long­term immunity. Exosomes (key intercellular communicators characterized by low immunogenicity, high biocompatibility and innate cargo­loading capacity) offer a novel approach for effective COVID­19 vaccine development. An engineered exosome­based vaccine displaying the four primary structural proteins of SARS­CoV­2 (spike, membrane, nucleocapside and envelope proteins) induces humoral and cell mediated immunity and triggers long­lasting immunity. The present review investigated the prospective use of exosomes in the development of COVID­19 vaccines; moreover, exosome­based vaccines may be key to control the COVID­19 pandemic by providing enhanced protection compared with existing vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19/prevenção & controle , Exossomos , Materiais Biocompatíveis , Vacinas contra COVID-19/imunologia , Exossomos/imunologia , Humanos , Imunidade Celular , Imunogenicidade da Vacina , Pandemias/prevenção & controle , SARS-CoV-2
14.
Arthritis Rheumatol ; 74(1): 92-104, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34224653

RESUMO

OBJECTIVE: T cells play a critical role in the pathogenesis of systemic lupus erythematosus (SLE). Serum-derived exosomes are increased in SLE patients and are correlated with disease severity. This study was undertaken to investigate whether T cell-derived exosomal proteins play a role in SLE pathogenesis. METHODS: We characterized proteins in T cell-derived exosomes from SLE patients and healthy controls by MACSPlex exosome analysis and proteomics. To study the potential pathogenic functions of the exosomal protein identified, we generated and characterized T cell-specific transgenic mice that overexpressed that protein in T cells. RESULTS: We identified eosinophil cationic protein (ECP, also called human RNase III) as overexpressed in SLE T cell-derived exosomes. T cell-specific ECP-transgenic mice (n = 5 per group) displayed early induction of serum interferon-γ (IFNγ) levels (P = 0.062) and inflammation of multiple tissue types. Older T cell-specific ECP-transgenic mice (n = 3 per group) also displayed an increase in follicular helper T cell and plasma B cell numbers, and in autoantibody levels (P < 0.01). Single-cell RNA sequencing showed the induction of IFNγ messenger RNA (P = 2.2 × 10-13 ) and inflammatory pathways in ECP-transgenic mouse T cells. Notably, adoptively transferred ECP-containing exosomes stimulated serum autoantibody levels (P < 0.01) and tissue IFNγ levels in the recipient mice (n = 3 per group). The transferred exosomes infiltrated into multiple tissues of the recipient mice, resulting in hepatitis, nephritis, and arthritis. CONCLUSION: Our findings indicate that ECP overexpression in T cells or T cell-derived exosomes may be a biomarker and pathogenic factor for nephritis, hepatitis, and arthritis associated with SLE.


Assuntos
Proteína Catiônica de Eosinófilo/biossíntese , Exossomos/imunologia , Inflamação/imunologia , Interferon gama/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Linfócitos T/imunologia , Animais , Humanos , Camundongos , Camundongos Transgênicos
15.
Inflammation ; 45(1): 460-475, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34596768

RESUMO

Mesenchymal stem cells induce kidney transplant tolerance by increasing regulatory T (Treg) cells. Bone marrow mesenchymal stem cell exosomes (BMMSC-Ex) promote Treg cell differentiation. Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) is expressed in BMMSCs and can be encapsulated in exosomes. We aimed to explore the role of DANCR in BMMSC-Ex in immune tolerance after kidney transplantation and related mechanism. The isogenic/allograft kidney transplantation mouse model was established, and levels of serum creatinine (SCr) were determined. Hematoxylin-eosin staining was conducted to detect the inflammation, and immunohistochemistry was performed to detect the infiltration of CD4+ T cells. Levels of IFN-γ, IL-17, and IL-2 were examined by ELISA. Flow cytometry was conducted to determine Treg cells. In the allograft group, the inflammatory response was severe, CD4+ T cell infiltration, SCr levels, and plasma rejection-related factors were up-regulated, while injection of BMMSC-Ex reversed the results. BMMSC-Ex increased Treg cells in kidney transplantation mice. Interference with DANCR reversed the promoting effect of BMMSC-Ex on Treg cell differentiation. DANCR bound to SIRT1, promoted ubiquitination and accelerated its degradation. The injection of BMMSC-Ex (after interference with DANCR) promoted SIRT1 levels, inflammatory response, CD4+ T cell infiltration, SCr levels, and plasma rejection related factors' expression, while Treg cells were decreased. LncRNA DANCR in BMMSC-Ex promoted Treg cell differentiation and induced immune tolerance of kidney transplantation by down-regulating SIRT1 expression in CD4+ T cells.


Assuntos
Exossomos/imunologia , Tolerância Imunológica , Transplante de Rim , Células-Tronco Mesenquimais/imunologia , RNA Longo não Codificante/imunologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Sirtuína 1/imunologia
16.
Microbiol Spectr ; 9(3): e0102421, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34908456

RESUMO

Hepatitis D is the most severe form of human viral hepatitis and currently lacks an efficient therapy. Dendritic cell-derived exosomes (Dexs) have been found to induce immune responses capable of eliminating viruses. However, the therapeutic potential of antigen-loaded exosomes in hepatitis D is still unknown. Recently, we designed exosomes loaded with ubiquitinated hepatitis delta virus (HDV) small delta antigen (Ub-S-HDAg) and then treated mice bearing replicating HDV with these exosomes to explore their antiviral effect and mechanism. Mature dendritic cell-derived exosomes (mDexs) were loaded with Ub-S-HDAg and their antivirus function was evaluated in mice with HDV viremia. Furthermore, the proportion of CD8+ cells, the ratio of Th1/Th2 cells, the postimmunization levels of cytokines were explored, and the Janus kinases (JAK)/signal transducer and activator of transcription (STAT) pathway was evaluated with a JAK2 inhibitor AG490. In Ub-S-HDAg-Dexs group, the HDV RNA viral load was significantly decreased compared with other groups by CD8+ cell enrichment and an increase Th1/Th2 cell ratio. Furthermore, lymphocyte infiltration was increased, while the HDAg level was decreased in mouse liver tissue. However, there were no significant differences in HBV surface antigen (HBsAg), alanine aminotransferase (ALT), or aspartate aminotransferase (AST) levels among the groups. Moreover, p-JAK2, p-STAT1, p-STAT4, STAT1, and STAT4 expression was increased in Ub-S-HDAg-Dexs group. In conclusion, Ub-S-HDAg-Dexs might be a potential immunotherapeutic agent for eradicating HDV by inducing specific cellular immune response via the JAK/STAT pathway. IMPORTANCE Hepatitis D is the most severe viral hepatitis with accelerating the process of liver cirrhosis and increasing the risk of hepatocellular carcinoma. However, there are no effective antiviral drugs. Exosomes derived from mature dendritic cells are used not only as immunomodulators, but also as biological carriers to deliver antigens to induce robust immune response. Based on these properties, exosomes could be used as a biological immunotherapy by enhancing adaptive immune response to inhibit hepatitis D virus replication. Our research may provide a new therapeutic strategy to eradicate HDV in the future.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Micropartículas Derivadas de Células/imunologia , Exossomos/imunologia , Vírus Delta da Hepatite/imunologia , Antígenos da Hepatite delta/imunologia , Equilíbrio Th1-Th2/fisiologia , Alanina Transaminase/análise , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Aspartato Aminotransferases/análise , Micropartículas Derivadas de Células/virologia , Células Cultivadas , Citocinas/sangue , Células Dendríticas/imunologia , Exossomos/virologia , Feminino , Antígenos de Superfície da Hepatite B/análise , Antígenos da Hepatite delta/metabolismo , Fatores Imunológicos/farmacologia , Imunoterapia/métodos , Janus Quinase 2/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/farmacologia , Tirfostinas/farmacologia , Carga Viral , Replicação Viral/imunologia
17.
Front Immunol ; 12: 730089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867951

RESUMO

Autoimmune thyroid diseases (AITDs) are chronic organ-specific autoimmune diseases, mainly including Graves' disease (GD) and Hashimoto's thyroiditis (HT). Exosomes, as extracellular vesicles, contain a variety of biologically active substances that play a role in information exchange, thereby affecting the occurrence and progression of diseases. However, it is unclear whether exosomes are involved in the pathogenesis of AITDs. In this study, the role of exosomes in AITDs was explored from a proteomics perspective. Plasma exosomes were isolated from 12 patients with GD, 10 patients with HT, and seven normal controls (NC). Protein profiles were detected using the data-independent acquisition (DIA) method and analyzed to investigate changes in plasma exosome proteins. In the setting of GD, 11 proteins were upregulated while 197 proteins were downregulated compared with healthy people. Among them, MAP1S (log2 FC = 4.669, p = 0.009) and VAMP8 (log2 FC = 3.216, p = 0.003) were the most significantly upregulated, and RSU1 (log2 FC = -6.797, p = 0.001), ACTB (log2 FC = -4.795, p < 0.001), and CXCL7 (log2 FC = -4.674, p < 0.001) were the most significantly downregulated. In the cases of HT, HGFL (log2 FC = 2.766, p = 0.001), FAK1 (log2 FC = 2.213, p < 0.001), and PTN12 (log2 FC = 1.624, p < 0.001) were significantly upregulated, while PSMF1 (log2 FC = -3.591, p < 0.001), PXL2B (log2 FC = -2.622, p = 0.001), and CYTM (log2 FC = -1.609, p < 0.001) were the most downregulated. These differential proteins were mainly enriched in the immune system and metabolic system, indicating that plasma exosomes may play an important role in systemic immune imbalance in AITDs.


Assuntos
Proteínas Sanguíneas/metabolismo , Exossomos/imunologia , Doença de Graves/sangue , Doença de Graves/imunologia , Doença de Hashimoto/sangue , Doença de Hashimoto/imunologia , Fatores Imunológicos/sangue , Adulto , Proteínas Sanguíneas/imunologia , Estudos de Casos e Controles , Exossomos/metabolismo , Feminino , Doença de Graves/etiologia , Doença de Hashimoto/etiologia , Humanos , Masculino , Análise Serial de Proteínas , Proteômica , Adulto Jovem
18.
Front Immunol ; 12: 757674, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867996

RESUMO

Exosomes are extracellular microvesicles (30-150 nm) released from cells that contain proteins, lipids, RNA and DNA. They can deliver bioactive molecules and serve as carriers facilitating cell-cell communication, such as antigen presentation, inflammatory activation, autoimmune diseases (AIDs) and tumor metastasis. Recently, much attention has been attracted to the biology and functions of exosomes in immune regulation and AIDs, including autoimmune thyroid diseases (AITDs). Some studies have shown that exosomes are involved in the occurrence and development of AITDs, but they are still in the preliminary stage of exploration. This review mainly introduces the association of exosomes with immune regulation and emphasizes the potential role of exosomes in AITDs, aiming to provide new research strategies and directions for the pathogenesis and early diagnosis of AITDs.


Assuntos
Exossomos/imunologia , Tireoidite Autoimune/imunologia , Imunidade Adaptativa , Adulto , Exossomos/química , Feminino , Bócio/sangue , Bócio/imunologia , Humanos , Imunidade Inata , Linfócitos/imunologia , Masculino , Fusão de Membrana , Pessoa de Meia-Idade , Células Mieloides/imunologia , Tireoidite Autoimune/sangue
19.
Signal Transduct Target Ther ; 6(1): 409, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848693

RESUMO

Natural killer (NK) cells have been suggested to be associated with type 2 diabetes by regulating systemic inflammation. However, the mechanism by which NK cells regulate insulin sensitivity remains unknown. This study shows that NK-derived exosomes from lean mice attenuate obesity-induced insulin resistance and inflammation in mice of type 2 diabetes. Moreover, lean NK-derived exosomes enhance insulin sensitivity and relieve inflammation in adipocytes and hepatocytes. MiR-1249-3p, which is significantly upregulated in lean NK-derived exosomes, can be transferred from NK cells to adipocytes and hepatocytes via exosomes. NK-derived exosomal miR-1249-3p dramatically induces cellular insulin sensitivity and relieves inflammation. Mechanistically, exosomal miR-1249-3p directly targets SKOR1 to regulate the formation of ternary complex SMAD6/MYD88/SMURF1, which mediates glucose homeostasis by suppressing the TLR4/NF-κB signaling pathway. This study reveals an emerging role for NK-derived exosomal miR-1249-3p in remission of insulin resistance, and provides a series of potential therapeutic targets in type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 2/imunologia , Exossomos/imunologia , Resistência à Insulina/imunologia , Células Matadoras Naturais/imunologia , MicroRNAs/imunologia , Animais , Inflamação/imunologia , Masculino , Camundongos
20.
J Nanobiotechnology ; 19(1): 457, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963466

RESUMO

High doses of radiation can cause serious side effects and efficient radiosensitizers are urgently needed. To overcome this problem, we developed a biomimetic nanozyme system (CF) by coating pyrite (FeS2) into tumor-derived exosomes for enhanced low-dose radiotherapy (RT). CF system give FeS2 with immune escape and homologous targeting abilities. After administration, CF with both glutathione oxidase (GSH-OXD) and peroxidase (POD) activities can significantly lower the content of GSH in tumor tissues and catalyze intracellular hydrogen peroxide (H2O2) to produce a large amount of ·OH for intracellular redox homeostasis disruption and mitochondria destruction, thus reducing RT resistance. Experiments in vivo and in vitro showed that combining CF with RT (2 Gy) can provide a substantial suppression of tumor proliferation. This is the first attempt to use exosomes bionic FeS2 nanozyme for realizing low-dose RT, which broaden the prospects of nanozymes.


Assuntos
Materiais Biomiméticos/administração & dosagem , Enzimas/administração & dosagem , Nanoestruturas/administração & dosagem , Neoplasias/radioterapia , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Materiais Biomiméticos/farmacologia , Linhagem Celular Tumoral , Enzimas/química , Enzimas/metabolismo , Exossomos/química , Exossomos/imunologia , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Evasão da Resposta Imune , Ferro/administração & dosagem , Ferro/química , Camundongos , Mitocôndrias/efeitos dos fármacos , Nanoestruturas/química , Neoplasias/metabolismo , Oxirredução/efeitos dos fármacos , Radiossensibilizantes/administração & dosagem , Radiossensibilizantes/química , Radiossensibilizantes/metabolismo , Radiossensibilizantes/farmacologia , Dosagem Radioterapêutica , Sulfetos/administração & dosagem , Sulfetos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...